
Mixed Integer Programming Approach to Multiprocessor
Job Scheduling with Setup Times

Eremeev A.V. and Kovalenko Yu.V.

Sobolev Institute of Mathematics,
4, Akad. Koptyug avenue, 630090, Novosibirsk, Russia.

Emails: eremeev@ofim.oscsbras.ru, julia.kovalenko.ya@yandex.ru

Abstract

Multiprocessor jobs require more than one processor at the same moment of time. We
consider two basic variants of scheduling multiprocessor jobs with various regular criteria.
In the first variant, for each job the number of required processors is given and fixed,
and the job can be processed on any subset of parallel processors of this size. In the
second variant, the subset of dedicated processors required by a job is given and fixed.
A sequence dependent setup time is needed between different jobs. We formulate mixed
integer linear programming models based on a continuous time representation for the
NP-hard scheduling problems under consideration. Using these models, we identify new
polynomially solvable cases.

Keywords: multiprocessor job, setup time, integer linear programming, polynomial
solvability

1 Introduction

We consider the multiprocessor scheduling problem, where a set of k jobs
J = {1, . . . , k} has to be executed by m processors such that each processor can work
on at most one job at a time, and each job must be processed simultaneously by sev-
eral processors. Let M = {1, . . . ,m} and let pj denote the processing time of job j for
each j ∈ J . Dedicated and parallel variants of the problem are studied here. In the first
variant, there is a size sizej associated with each job j ∈ J indicating that the job can be
processed on any subset of parallel processors of the given size. In the second variant, each
job j ∈ J requires a simultaneous use of a pre-specified subset (mode) fixj of dedicated
processors. Following the traditional definitions in scheduling theory [1] we consider rigid
jobs in the first variant and single mode multiprocessor jobs in the second variant.

A sequence dependent setup time is required to switch a processor from one job to
another. For the parallel model of the problem let sjj′ be the non-negative setup time
from job j to job j′, where j, j′ ∈ J . For the dedicated variant of the problem let sl

jj′

denote the setup time from job j to job j′ on processor l, l ∈ M, j, j′ ∈ Fl, where
Fl = {j ∈ J : l ∈ fixj} is the set of jobs that use processor l ∈M.

1

Following the traditional thee-field notation for scheduling problems [1], we denote
preemptive version of the problem with single mode multiprocessor jobs (rigid jobs) as
P |fixj , pmtn, sl

jj′ |γ (P |sizej , pmtn, sjj′ |γ) and non-preemptive version of the problem is
denoted by P |fixj , s

l
jj′ |γ (P |sizej , sjj′ |γ). Here γ specifies an objective function. It is

assumed that the subset of processors used by a rigid job can be changed at runtime in
preemptive scheduling.

We consider four widely used objective functions to be minimized:
the makespan, Cmax = maxj∈J Cj , the maximum lateness, Lmax = maxj∈J (Cj − dj), the
sum of completion times, C∑ =

∑
j∈J Cj , the sum of latenesses, L∑ =

∑
j∈J (Cj − dj),

where Cj denote the completion time of job j ∈ J , and dj is the due date of job j ∈ J ,
i.e. the time by which job j should be completed.

In practice one often may assume that the setup times satisfy the triangle inequality:

sl
j′′,j′ ≤ sl

j′′,j + sl
j,j′ , j, j′, j′′ ∈ Fl, l ∈M (for dedicated processors), (1)

sj′′,j′ ≤ sj′′,j + sj,j′ , j, j′, j′′ ∈ J (for parallel processors). (2)

We denote this special case by placing ∆ in front of sl
jj′ (or sjj′) in the

second field of the three-field notation. In the special case where the num-
ber of machines m = 1 is not a part of the input, there is no difference be-
tween rigid jobs and single mode multiprocessor jobs and the problem notation
simplifies to 1|pmtn,∆sjj′ |γ and 1|∆sjj′ |γ for preemptive and non-preemptive jobs
respectively.

All mentioned above problems P |fixj , pmtn,∆sl
jj′ |γ, P |fixj ,∆sl

jj′ |γ,
P |sizej , pmtn,∆sjj′ |γ and P |sizej ,∆sjj′ |γ with γ ∈ {Cmax, Lmax, C∑, L∑} are
NP hard even in the single-machine case as implied by the following proposition.

Proposition 1 Problems 1|pmtn,∆sjj′ |γ and 1|∆sjj′ |γ with γ ∈ {Cmax, Lmax,
C∑, L∑} are strongly NP-hard.

Proposition 1 may be attributed to the “folklore”. However for the sake of complete-
ness we provide its proof in the appendix.

In [2], the problem of scheduling multiprocessor jobs with sequence-dependent setup
times was combined with a lot-sizing problem where it is required to produce a set of the
products in demanded volumes. In this setting, the multiprocessor jobs were called multi-
machine technologies, each technology engaging a number of machines simultaneously to
produce a batch of some product. In [2], this problem with Cmax criterion was shown to
be hard to approximate and new NP-hard and polynomially solvable special cases were
identified.

A MIP model was proposed by M.A. Shaik et al. in [10] for a prob-
lem of scheduling multi-machine technologies with sequence-dependent setup times
for continuous production plants. Besides that, a decomposition method was
developed in [10] to solve real-life problems from chemical industry where
straightforward application of the MIP model was impractical.

A survey of results on multiprocessor jobs scheduling in the case of zero setup
times is provided by M. Drozdowski in [1]. It is known that in this case problem

2

P |sizej , pmtn|Cmax with the number of processors bounded above by a constant (de-
noted Pm|sizej , pmtn|Cmax) and problem P |fixj , pmtn|Cmax with only two-processor
jobs are both polynomially solvable. This result is based on the fact that the con-
sidered special cases may be treated as linear programming (LP) problems using the
so-called configurations introduced by K. Jansen and L. Porkolab [7, 8] and resem-
bling patterns proposed by L.V. Kantorovich and V.A. Zalgaller for the one-dimensional
cutting-stock problem in the middle of 20-th century (see e.g. [9]). In [7, 8] a config-
uration is defined as a set of jobs which may be processed simultaneously. The to-
tal number of configurations is O(km) and the resulting LP problems contain O(km)
variables, each one representing the time of using the corresponding configuration
in a schedule, and O(k) constraints. These problems may be solved in polyno-
mial time by considering the dual LP problems and applying the ellipsoid method of
M. Grötschel, L. Lovász and A. Schrijver. [4].

Unfortunately the configurations-based approach can not be extended to the case of
sequence-dependent setup times because in the general case evaluation of objective func-
tion requires not only the durations but also the sequence of jobs on each machine. In
the present paper, we develop the MIP models for multiprocessor jobs scheduling with
sequence-dependent setup times using the notion of event points, which was originally
proposed in the context of single-processor jobs by M.G. Ierapetritou and C.A. Floudas
in [6]. In the case of multiprocessor jobs, an event point, as well as a configuration, corre-
sponds to some set of compatible jobs, but in contrast to the set of jobs of a configuration
(which is defined a priori) the set of jobs of an event point is defined by the values of
Boolean variables of this event point. The presence of Boolean variables allows to account
for the sequence dependent setup times. Besides that, unlike the jobs of a configuration,
the jobs of an event point may have different starting and completion times.

The MIP models proposed on the basis of event points are described in Section 2.
Using these models, the new polynomially solvable cases with sequence-dependent setup
times are identified in Section 3. The concluding remarks are provided in Section 4.

2 Mixed Integer Linear Programming Models

2.1 Single Mode Multiprocessor Jobs

Let us define the notion of event points analogously to [2, 6]. By event point we will mean a
subset of variables in mixed integer linear programming (MIP) model, which characterize
a selection of a certain set of jobs and their starting and completion times. In one event
point each processor may be utilized in at most one job. The set of all event points will
be denoted by N = {1, . . . , nmax}, where the parameter nmax is chosen sufficiently large
on the basis of a prior estimates or preliminary experiments.

The structure of the schedule is defined by the Boolean variables wjn such that wjn = 1
if job j is executed in event point n, and wjn = 0 otherwise. In case job j is executed in
event point n, the staring time and the completion time of job j in this event point are
given by the real-valued variables T st

jn and T f
jn accordingly.

3

Let H be an upper bound on the schedule length,

H :=
∑
j∈J

pj + (k − 1) · max
l∈M, j 6=j′∈Fl

{sl
jj′}.

Then the set of feasible solutions for problem P |fixj , pmtn, sl
jj′ |γ is defined as follows∑

j∈Fl

wjn ≤ 1, l ∈M, n ∈ N, (3)

T f
jn ≥ T st

jn, j ∈ J , n ∈ N, (4)

T st
jn ≥ T f

j′n′ + sl
j′j −H(2− wjn − wj′n′ +

∑
j̃∈Fl

∑
n′<ñ<n

wj̃ñ), (5)

l ∈M, j, j′ ∈ Fl, n, n′ ∈ N, n 6= 1, n′ < n,

T f
jn − T st

jn ≤ wjn · pj , j ∈ J , n ∈ N, (6)

∑
n∈N

T f
jn − T st

jn

pj
≥ 1, j ∈ J , (7)

wjn ∈ {0, 1}, T st
jn ≥ 0, j ∈ J , n ∈ N. (8)

Constraint (3) implies that in any event point on processor l at most one job may be
executed. Constraint (5) indicates that the starting time of job j on processor l should not
be less than the completion time of a preceding job on the same processor, plus the setup
time. Constraint (4) guarantees that all jobs may be performed only for non-negative
time. If a job j is not executed in the event point n (i.e. wjn = 0) then its duration
should be zero – this is ensured by inequality (6). Constraint (7) implies that each job
j ∈ J is entirely executed. Constraints (8) give the area where the variables are defined.

The set of feasible solutions for problem P |fixj , s
l
jj′ |γ may be obtained from (3)–(8)

by adding the inequality ∑
n∈N

wjn ≤ 1, j ∈ J , (9)

which ensures each job is executed without preemptions.
The optimization criteria for presented models are formulated in the following form.

1. Makespan
Cmax → min,

Cmax ≥ T f
jn, j ∈ J , n ∈ N.

2. Sum of completion times ∑
j∈J

T f
j → min,

T f
j ≥ T f

jn, j ∈ J , n ∈ N.

3. Maximum lateness
Lmax → min,

Lmax ≥ T f
jn − dj , j ∈ J , n ∈ N.

4

4. Sum of latenesses ∑
j∈J

Lj → min,

Lj ≥ T f
jn − dj , j ∈ J , n ∈ N.

2.2 Rigid Jobs

MIP models for problems with rigid jobs are constructed based on the same principles
as the previous models. However, in this case, if only the jobs are allocated in the
event points, then a problem of assignment of the jobs to processors arises. Mainly,
this assignment is needed to calculate the setup times between jobs on processors. The
following proposition shows that such assignment problems with criteria Cmax and Lmax

are NP-hard.

Proposition 2 Suppose a family of subsets of jobs {J1, . . . ,Jnmax} is given
as a part of the problem input. Then problems P2|sizej , pmtn, sjj′ |γ and
P2|sizej , sjj′ |γ with γ ∈ {Cmax, Lmax}, under additional constraint that n-th job processed
on each machine belongs to Jn, n = 1, . . . , nmax, is NP-hard.

Proof. The hardness of considered problems can be shown by a polynomial reduction
of Ordered Partition problem, which is known to be NP-complete [3]. Ordered
Partition problem is formulated as follows: Let an ordered set A = {a1, a2, . . . , a2k0} be
given. A positive integer ei is associated with each element ai ∈ A, i = 1, . . . , k, such that∑
ai∈A

ei = 2E. Ordered Partition problem asks if there exists a partition of A into two

subsets A1 and A2 such that
∑

ai∈A1

ei =
∑

ai∈A2

ei = E, |A1| = |A2| = k0 and set A1 includes

exactly one element from each pair a2i−1, a2i, i = 1, . . . , k0.
For brevity we will denote P |sizej , pmtn, sjj′ |Cmax and P |sizej , sjj′ |Cmax problems

under additional constraint that n-th job processed on each machine belongs to Jn, n =
1, . . . , nmax, by P1 and P2 respectively.

We reduce an Ordered Partition instance to instances of problems P1 and P2 as
follows. Put the number of jobs k := 2k0; the number of processors m := 2; sizej := 1,
pj := ej and sjj′ := 0 for all j 6= j′ ∈ J . Besides that we define a family of subsets of jobs
assuming nmax := k0 and Jn := {2n− 1, 2n} for n = 1, . . . , k0.

Consider the decision versions of problems P1 and P2 which ask if there is a schedule
with makespan Cmax ≤ K for a given K.

Note that in the instances of P1 and P2 defined above, each job j belongs only to one
subset Jn and

∑
j∈J pj = 2E. Hence, in a schedule with Cmax ≤ K, assuming K := E,

all jobs are executed without preemptions on one of the two processors, because overall
available time on two processors does not exceed 2E. Therefore, a positive answer to
an instance of decision problem P1 or P2 implies a positive answer to the Ordered
Partition problem and vice versa.

In the case of criterion Lmax, the statement of the proposition holds because criteria
Lmax and Cmax are equivalent when dj = 0 for all j ∈ J .

5

In view of Proposition 2, in the case of rigid jobs we formulate our MIP models in
such a way that both jobs and processors, on which they are executed, are assigned in the
event points.

The structure of the schedule is also defined by the Boolean variables wjn and the
real-valued variables T st

jn and T f
jn, which have the same meaning as in the case of single

mode multiprocessor jobs. Moreover, we include additional Boolean variables zjln such
that zjln = 1 if job j is executed in event point n and uses processor l, and zjln = 0
otherwise.

Let H be an upper bound on schedule length. It suffices to put

H =
∑
j∈J

pj + (k − 1) ·max
j 6=j′

{sjj′}.

Based on the above remarks and variables, the set of feasible solutions for prob-
lem P |sizej , pmtn, sjj′ |γ is defined by the following constraints:∑

j∈J
zjln ≤ 1, l ∈M, n ∈ N, (10)

∑
l∈M

zjln = sizej · wjn, j ∈ J , n ∈ N, (11)

T f
jn ≥ T st

jn, j ∈ J , n ∈ N, (12)

T st
jn ≥ T f

j′n′ + sj′j −H(2− zjln − zj′ln′ +
∑
j̃∈J

∑
n′<ñ<n

zj̃lñ), (13)

l ∈M, j 6= j̃ ∈ J , n, n′ ∈ N, n 6= 1, n′ < n,

T f
jn − T st

jn ≤ wjn · pj , j ∈ J , n ∈ N, (14)

∑
n∈N

T f
jn − T st

jn

pj
≥ 1, j ∈ J , (15)

zjln ∈ {0, 1}, wjn ∈ {0, 1}, T st
jn ≥ 0, j ∈ J , l ∈M, n ∈ N. (16)

Constraints (10), (12)–(15) have the same interpretation as in the model for prob-
lem P |fixj , pmtn, sl

jj′ |γ. Constraint (11) guarantees that job j uses exactly sizej proces-
sors if it is executed in the event point n (i.e. wjn = 1).

The set of feasible solutions for problem P |sizej , sjj′ |γ may be obtained from (10)–
(16) by adding inequality (9). The optimization criteria are modeled as in the case of
dedicated processors.

3 Polynomially Solvable Cases

New polynomially solvable special cases with non-zero setup times are found using pro-
posed MIP models, under assumption that the number of jobs is bounded by a constant.
An instance of a multiprocessor job scheduling problem is reduced to a number of in-
stances of a linear programming problem, obtained from the MIP model assigning some
fixed values to Boolean variables.

6

3.1 Single Mode Multiprocessor Jobs

In order to find an optimal solution to P |fixj , s
l
jj′ |γ using model (3)–(9), it is sufficient

to assume nmax = k because the preemptions are not allowed. Denote Pfix the linear
programming problem obtained by fixing all Boolean variables (wjn) in model (3)–(9)
supplemented by a linear programming formulation of optimization criterion γ. Here and
below by fixing of the variables we assume assignment of some fixed values to them (which
turns these variables into parameters). Problem Pfix with nmax = k involves a polynomial-
ly bounded number of variables and constraints, which means it is polynomially solvable
(see e.g. [4]).

Let τfix be an upper bound on the time complexity of solving problem Pfix. The
problem P |fixj , s

l
jj′ |γ, where the number of jobs is bounded from above by a constant,

we denote by P |fixj , s
l
jj′ , k = const|γ. This problem reduces to (nmax)k problems of Pfix

type with nmax = k. Therefore the following theorem holds.

Theorem 1 Problem P |fixj , s
l
jj′ , k = const|γ, γ ∈ {Cmax, C∑, Lmax, L∑}, is polynomi-

ally solvable within O(τfix · kk) time.

To find an optimal solution to P |fixj , pmtn,∆sl
jj′ |γ problem, it suffices to set

nmax = km in model (3)–(8). Indeed, the number of different sets of jobs that may be
executed simultaneously does not exceed km. Besides that, there exists an optimal so-
lution to problem P |fixj , pmtn,∆sl

jj′ |γ where each of the above mentioned sets of jobs
is executed simultaneously at most once. This fact follows by the lot shifting technique
which is applicable here since the setup times obey the triangle inequality (see e.g. [11]).

Let P ′fix denote the linear programming problem obtained by fixing all Boolean vari-
ables (wjn) in MIP model (3)–(8) supplemented by a linear programming formulation
of optimization criterion γ. A problem P ′fix with nmax = km and the number of pro-
cessors bounded above by a constant is polynomially solvable. Let τ ′fix denote an up-
per bound of the time complexity of solving P ′fix. The problem P |fixj , pmtn,∆sl

jj′ |γ,
where the numbers of processors and jobs are bounded by a constant is denoted by
Pm|fixj , pmtn,∆sl

jj′ , k = const|γ in what follows. This problem reduces to 2knmax prob-
lems of P ′fix type, where nmax = km. So the following result holds.

Theorem 2 Problem Pm|fixj , pmtn,∆sl
jj′ , k = const|γ, γ ∈ {Cmax, C∑,

Lmax, L∑}, is polynomially solvable within O
(
τ ′fix · 2km+1

)
time.

In some works it is assumed that a job has a number of alternative modes, where each
processing mode is specified by a subset of processors and the execution time of the job
on that particular processor set. Such jobs are called multimode multiprocessor jobs [1].
Our MIP models and polynomially solvable cases for single mode multiprocessor jobs may
be extended to the scheduling problem with multimode multiprocessor jobs and various
regular criteria, which can be formulated in terms of linear programming.

3.2 Rigid Jobs

In order to find an optimal solution to P |sizej , sjj′ |γ using model (9)–(16), it is suf-
ficient to set nmax = k because the preemptions are not allowed. Denote by Psize the

7

linear programming problem obtained by fixing all Boolean variables (wjn) and (zjln) in
model (9)–(16) with a linear formulation of optimization criterion γ. Problem Psize with
nmax = k involves O(k2) variables and O(k4m) constraints, then it is pseudopolynomially
solvable, since m is the numerical parameter of the problem. Let τsize be an upper bound
on the time complexity of solving problem Psize.

The problem P |sizej , sjj′ |γ, where the number of jobs is bounded by a con-
stant from above, is denoted by P |sizej , sjj′ , k = const|γ. This problem re-

duces to O

(
nk

max

k∏
j=1

C
sizej
m

)
problems of Psize type with nmax = k. Problem

P |sizej , sjj′ , k = const|γ is polynomially solvable in O

(
τsize · kk

k∏
j=1

C
sizej
m

)
time, if m ≤

k∑
j=1

sizej and sizes sizej are bounded by a constant for all j ∈ J , and the problem is

trivial, if m >
k∑

j=1
sizej . In the latter case, all jobs start at time moment t = 0 in the

early schedule. Therefore the following theorem holds.

Theorem 3 Problem P |sizej , sjj′ , k = const|γ, γ ∈ {Cmax, C∑, Lmax, L∑}, is polyno-
mially solvable, when parameters sizej are bounded by a constant for all j ∈ J

To find an optimal solution to P |sizej , pmtn,∆sjj′ |γ problem, it suffices to set
nmax = km in model (10)–(16) as in the case of dedicated processors (see section 3.1).
Let P ′size be the linear programming problem obtained by fixing all Boolean variables (wjn)
and (zjln) in MIP model (10)–(16) supplemented by a linear formulation of optimization
criterion γ. Denote by τ ′size an upper bound of the time complexity of solving P ′size. The
problem P |sizej , pmtn,∆sjj′ |γ, where the numbers of processors and jobs are bounded
by a constant, we denote by Pm|sizej , pmtn,∆sjj′ , k = const|γ. This problem reduces to
2kmnmax problems of P ′size type, where nmax = km. Thus, we have

Theorem 4 Problem Pm|sizej , pmtn,∆sjj′ , k = const|γ, γ ∈ {Cmax, C∑,

Lmax, L∑}, is polynomially solvable within O
(
τ ′size · 2mkm+1

)
time.

Let us assume that there is a set of usable processor numbers for each job j ∈ J .
Then the jobs are called moldable jobs [1], if the number of required processors is chosen
before starting a job and is not changed until the job termination. Jobs are called mal-
leable [1], if the number of processors can be changed at runtime. The MIP models and
polynomially solvable cases presented above for the case of rigid jobs may be generalized
to the scheduling problems with moldable and malleable jobs.

4 Conclusions

The problem of multiprocessor job scheduling is studied in parallel and dedicated ver-
sions. MIP models are formulated for both versions of the problem using the event-points
approach and continuous time representation. New polynomially solvable special cases of

8

the problem are found using the MIP models, under assumption that the number of jobs
is bounded by a constant.

Presented models and polynomially solvable cases are extended to the other (more gen-
eral) scheduling problems with moldable jobs, malleable jobs, multimode multiprocessor
jobs and various regular criteria, which can be formulated in linear form.

Acknowledgements

This research is supported by the Russian Science Foundation grant 15-11-10009. The
authors are grateful to M.Y. Kovalyov for helpful remarks.

References

[1] Drozdowski M.: Scheduling for Parallel Processing. Springer-Verlag, London (2009)

[2] Eremeev, A.V., Kovalenko J.V.: On multi-product lot-sizing and scheduling with
multi-machine technologies. Operations Research Proceedings 2014. Selected Papers
of the Annual International Conference of the German Operations Research Society
(GOR), (September 2-5, 2014), 301–306, Springer, Berlin (2016)

[3] Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of
NP-completeness. W.H. Freeman and Company, San Francisco (1979)

[4] Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Op-
timizations, 2nd corrected edition. Springer-Verlag (1993)

[5] Itai A., Papadimitriou C. H., Szwarcfiter J. L.: Hamilton paths in grid graphs. SIAM
J. Comput. 11 (4) 676–686 (1982)

[6] Ierapetritou, M.G., Floudas, C.A.: Effective continuous-time formulation for short-
term scheduling: I. Multipurpose batch process. Ind. Eng. Chem. Res. 37 4341–4359
(1998)

[7] Jansen, K., Porkolab, L.: Preemptive parallel task scheduling in O(n)+poly(m) time.
D.T. Lee and S.H. Teng, editors, Proc. of ISAAC 2000. LNCS, Vol. 1969, 398–409
(2000)

[8] Jansen, K., Porkolab, L.: Preemptive scheduling with dedicated processors: applica-
tions of fractional graph coloring. Journ. Scheduling 7 35–48 (2004)

[9] Mukhacheva, E.A. and Mukhacheva, A.S.: L.V. Kantorovich and cutting-packing
problems: New approaches to combinatorial problems of linear cutting and rectangular
packing. Journal of Mathematical Sciences 133 (4) 1504–1512 (2006)

[10] Shaik, M.A., Floudas, C.A., Kallrath, J., Pitz, H.J.: Production scheduling of
a large-scale industrial continuous plant: short-term and medium-term scheduling.
Comp. Chem. Engng. 33, 670–686 (2009)

[11] Tanaev, V.S., Kovalyov, M.Y., Shafransky, Y.M.: Scheduling Theory. Group Tech-
nologies. Minsk, Institute of Technical Cybernetics NAN of Belarus (1998) (In Russian)

9

Appendix: The Proof of Proposition 1

Proposition 1 Problems 1|pmtn,∆sjj′ |γ and 1|∆sjj′ |γ with
γ ∈ {Cmax, Lmax, C∑, L∑} are strongly NP-hard.

Proof. We will consider only C∑ criterion since the problems with other three criteria
are treated analogously.

In [5] it is proven that recognition of grid graphs with a Hamiltonian path (the Hamil-
ton Path Problem) is NP-complete. Recall that a graph G′ = (V ′, E′) with ver-
tex set V ′ and edge set E′ is called a grid graph, if its vertices are the integer vectors
v = (xv, yv) ∈ Z2 on plane, i.e., V ′ ⊂ Z2, and a pair of vertices is connected by an edge iff
the Euclidean distance between them is equal to 1. Here and below, Z denotes the set of
integer numbers. We can assume that graph G′ is connected since otherwise Hamiltonian
path does not exist and this can be recognized in polynomial time.

Let us first reduce Hamilton Path problem to 1|∆sjj′ |C∑, assuming that jobs cor-
respond to vertices and the setup times are equal to Euclidean distances between the
integer points where the corresponding vertices are located. All processing times pj = 1.

Then minimal setup times are equal to one. The earliest starting times of the jobs are
1, 3, 5, 7, . . . , 2k − 1, where k is the number of jobs.

In the recognition version of 1|∆sjj′ |C∑ it is required to answer the question: Is there
a schedule with C∑ value not greater than a given value K?

Let us put K := (1 + 3 + 5 + 7 + .. + 2k − 1) = k2.
On one hand, if a schedule with the value of C∑ at most K exists, then all setups of

this schedule are equal to 1 and graph G′ contains a Hamilton path. On the other hand,
if graph G′ contains a Hamilton path then ordering the jobs in the sequence of vertices of
this path we obtain a schedule with the value of C∑ = k2.

This reduction is computable in polynomial time and all input parameters of
1|∆sjj′ |C∑ instance are upper bonded by k, so we conclude that 1|∆sjj′ |C∑ problem is
strongly NP-hard.

In the case of 1|pmtn, ∆sjj′ |C∑ problem we construct the same reduction. Note that
in a schedule with C∑ ≤ k2 the preemptions are impossible. Indeed, suppose that job j′

is the first job that has a preemption and all n preceding jobs have no preemptions. Let
job j′ be executed for a units of time and then preemption took place and let j′′ be the
first job, which finishes after this preemption.

In case j′′ 6= j′, job j′′ ends at time t ≥ 2(n + 1)− 1 + a. In this case even if all jobs
after j′′ finish in the earliest possible times 2(n + 2) − 1, 2(n + 3) − 1, . . . , 2k − 1, then
still C∑ > k2.

In case j′′ = j′, job j′ ends at time t ≥ 2(n+1)−1+b, where b is the total preemption
time of job j′. Thus by the same reasoning as in the previous case, we conclude that
C∑ > k2.

10

